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Numerical study of convective heat transfer 
from periodic open cavities in a channel 
with oscillatory throughflow 
Toru Fusegi 
Engineering Systems In ternat ional /Nihon ESI K.K., Tokyo, Japan 

A numerical study is performed on the fully developed forced-convection heat transfer in a 
grooved channel with a heated lower plate. Periodic flows are forced through the channel. 
The time-periodic variations of externally sustained pressure gradients imposed upon the 
throughflow have significant bearing on the interaction between the throughflow in the 
channel and the recirculatory flow inside the cavity. Aided by this interaction, convective 
heat transfer is pronounced for Re >_ 102, where Re is the oscillatory flow Reynolds 
number. As the Womersley n'umber increases, the communication between the heated 
fluid inside the cavity and the thi'oughflow is promoted, leading to heat transfer enhance- 
ment. © 1997 by Elsevier Science Inc, 

Keywords: heat transfer enhancement; forced-convection; oscillatory flow; grooved 
channel, finite volume method 

Introduct ion 

Heat transfer enhancement has been a major subject of intensive 
research in thermal engineering. Numerous innovative 
technological applications rely heavily upon sophisticated heat 
transfer engineering devices for achieving high performance. 
For example, integrated circuit (IC) boards with increasing 
package density and, consequently, higher heat dissipation rates 
could not operate satisfactorily without effective means of heat 
removal. Improving the heat transfer performance can be accom- 
plished in such ways as increasing the fan speed, using more 
powerful cooling agents, and introducing unconventional cooling 
technologies. Because mechanical constraints existing in the ac- 
tual device design, cost, and environmental issues, for example, 
may impose practical limits on the maximum performance of the 
first two of these options, further progress in cooling technolo- 
gies awaits the advent of innovative methods. In an effort to 
augment heat transfer actively, convective heat transfer in oscil- 
latory or pulsatilc flows has recently attracted much attention. 
(The distinction between these two classes of flows is made in the 
literature based upon the criterion of whether the cycle-averaged 
flow rate is zero. If so, the flow is oscillatory; otherwise, the flow 
is said to have pulsatile components about the mean flow rate.) 

Since the pioneering study by Sobey (1980), it has been well 
recognized that much heat and mass transfer enhancement can 
be expected in corrugated channels using oscillatory flows. Flow 
patterns accompanying unsteady separation are calculated by 
Sobey in a sinusoidally furrowed channel. A low-Reynolds num- 
ber range, in which viscous effects predominate, is considered in 
his work. He showed that flow separation took place near the 
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upstream side of the wall, resulting in formation of a recirculat- 
ing cell. This was subsequently ejected into the channel when the 
throughflow reversed the direction. These features stem from the 
effects of the streamline curvature caused by streamwise varia- 
tion in the channel contours. Such effects are absent in a plane 
channel, for which the heat/mass transfer rate remains constant 
in the laminar fully developed regime. The vortex dynamics 
presenting in a corrugated channel promotes mixing of the fluid, 
leading to heat/mass transfer enhancement. 

An extended range of the Reynolds number, including the 
inertia-dominated regime with highly convective flows, was 
studied by Nishimura et al. (1991) in a furrowed channel similar 
to that used by Sobey (1980). The paper described in detail the 
time-averaged flow pattern, referred to as "steady streaming," 
that was a manifestation of fluid mixing attributable to vortex 
dynamics. In both numerical solutions using a finite element 
method and experimental flow visualization results, time asym- 
metric flow patterns have been detected wherein the flow fields 
observable during a half cycle having a positive flow rate differ 
slightly from those in the negative flow-rate cycle. They appeared 
in limited ranges of the Reynolds and Strouhal numbers in the 
inertia-dominated regime. The experimental results demon- 
strated the onset of three-dimensional (3-D) flows that were 
thought to be induced by the centrifugal instability arising near 
the convex surface of the sinusoidally contoured channel walls. 
Steady streaming, which results from nonlinear interaction be- 
tween the oscillatory flow and the curved wall, is shown to be a 
good indicator for measuring of the extent of fluid mixing. For 
these flows, the possibility of heat/mass transfer augmentation 
has been confirmed experimentally in a subsequent work, in 
which the mass transfer rate was measured directly (Nishimura 
et al. 1993). 

In passing, it should be mentioned that heat/mass transfer 
can be enhanced by applying pulsation to the throughflow. Past 
work focuses mainly on the behavior of transitional flows for 
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which grooves or any object placed in the channel act to induce a 
hydrodynamic instability. In a grooved-channel geometry, 
Ghadder et al. (1986a, b)computed self-sustained oscillations, 
whose characteristics were similar to Tollmien-Schlichting waves, 
by initially perturbing the throughflow. They found that these 
excited traveling waves increased the heat transfer rate, which 
they termed 'resonant heat transfer enhancement." 

With a view toward delineating the physical mechanism un- 
derlying augmented transport in self-sustained oscillatory flows, 
Majumdar and Amon (1993) analyzed the kinetic energy equa- 
tion for the fluctuating components of the flow deduced from 
direct numerical simulation (DNS) data of the self-sustained 
oscillatory mode in a communicating channel, which is a two- 
dimensional (2-D) straight channel with discrete blocks placed at 
the centerline. They computed the spatial distribution of a transi- 
tional viscosity Vtr, which was defined for nonturbulent transi- 
tional flows in a manner analogous to the turbulent viscosity 
through the Reynolds stress, and showed that a high concentra- 
tion of Vtr near the leading and trailing edges of the block was 
responsible for locally au[Tnenting momentum transport. A simi- 
lar analysis was undertaken (Kim et al. 1991) for backflows in a 
channel mounting a single heated block. 

Review of the literature presented above reveals that there 
seems to be little work done for convective heat transfer in a 
grooved channel with oscillatory throughflow, which is of much 
relevance to electronic device cooling. Previous investigations in 
this class of flows focused on the smoothly varying channel 
shapes, forming a succession of converging-diverging sections so 
that the throughflow came into contact essentially with the entire 
flow passage. In contrast, when the surface of the channel 
embeds rectangular grooves, recirculatory flows appear inside 
the grooves. Previously, it was found for a grooved channel with 
nonoscillatory, constant rate through flow that, for the cavity 
aspect-ratio (groove height h divided by its width L) A > 0.5, a 
standing vortex occupied the entire cavity, preventing the 
throughflow from contacting the lower heat transfer surface of 
the groove (Fusegi 1994). Consequently, there is little communi- 
cation between the throughflow and the inner cavity flow. As 
long as the viscous effects are strong; i.e., low-Re flows, flow 
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conditions 

patterns similar to those of nonoscillatory flows persist, even if 
oscillating throughflow is considered in this geometry (Fusegi 
1996). Hence, it is of interest to examine the flow properties in a 
higher-Re range in search of heat transfer enhancement using 
oscillatory flow. 

In the present investigation, numerical simulations are con- 
ducted on convective heat transfer in a 2-D channel between 
parallel flat plates. The lower plate of the channel is grooved 
periodically to form open cavities (see Figure 1). The bottom 
surface of each cavity is heated by a uniform heat flux. The fully 
developed state of the flow and heat transfer is assumed. This 
enables us to apply the "periodic condition" in which the field 
patterns repeat themselves every length of periodicity I. Patankar 
et al. (1977) presented an appropriate formulation for this class 
of problems dealing with steady-state fully developed flow and 
heat transfer by decomposing periodic and nonperiodic parts of 
variables. It has been extended to an unsteady formulation in an 
analysis of fully developed oscillatory flow and heat transfer 

Notation 

cp specific heat at constant pressure, (J /kg.  K) 
H half-height of the unobstructed part of the channel 

(reference length), (m) 
h cavity depth, h*/H 
k thermal conductivity of fluid, (W/m-  K) 
L heated length, (L*/H) 
l length of periodicity, (l*/H) 
rh mass flow rate per unit span, (rh*/p(II/to)H) 
Nu Nusselt number, qH/k(O* - Of) 

I - l f L / 2  average Nusselt :number, ~ J-L/2 NU dx 
p pressure, (p*--ph)/p(II/to) z, Ph being hydrostatic 

pressure (N /m 2) 
Pr Prandtl number, cpp~/k 
c) heat flux, (W/m z) 
Re oscillatory flow Reynolds number, (p(II/to)H/~) 
Re m mass flow rate Reynolds number, (rh*)/p. 
St Strouhal number, [toH/(II/to) (= Wo2/Re)] 
t time, tot* 
u,v velocity components in the x- and y-directions, 

[(u*, v*)~o/rI] 
Wo Womersley number, H~/ '~--~ 
x, y Cartesian coordinates, [(x*, y*) /H]  

Greek 

13 thermal expansion coefficient, ( l / K )  
O parameter defined by Equation 1, O*k/i 1 
0 temperature, (O*k/flH) 
0 b bulk temperature, f02 lul 0 d y / f  2 ]uldy 
p, viscosity, (kg/m. s) 
II parameter defined by Equation 1, (m/s  2) 
p density, (kg/m 3) 
• r a normalized time, t/2 Ir 

stream function, O*/H(II/to) 
to frequency of oscillations ( l / s )  
( • ) positive half-cycle averaged, ~r-1 f02~ max[., O] dt 

(max[a, b] denotes the larger of the two arguments) 

Subscripts 

cv at the cavity top, (y = 0) 
w at the wall 

Superscripts 

* dimensional quantity 
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between parallel fiat plates by Liao et al. (1994). The same 
formulation was applied in a previous investigation focusing on 
mixed convection in a low-Re range by the present author 
(Fusegi 1996). The mathematical formulation is described below. 
A simple physical configuration is studied by restricting our 
attention to single-channel geometry for which the groove is 
square and set to h = L = H and l = 2H. The pressure gradient 
across the channel varies in sinusoidal form as a function of time. 
The pertinent dimensionless parameters of the problem are the 
Reynolds number based on an oscillation velocity scale 1-I/o, Re, 
and the Womersley number Wo. Their definition is provided in 
the Notation section. These parameters range over 10 < Re < 103 
and 2 < Wo < 2 s in the present study. The fluid is air, and the 
Prandtl number is equal to 0.71. 

The boundary conditions are prescribed as follows: 

u = v = 0 at the solid wall (no-slip condition) (6) 

ao L L 
- - = 1  in - - - < x <  at -h  (uniform heat flux) 
ay 2 - - -2 Y =  

00 
- -  = 0 the normal derivative at the other walls (insulated wall) 
an 

(7) 

(u, v, p, 0)Ix= 1/2 = (u, v, p, 0)Ix= - 1/2 (periodic condition) 

(8) 

Mathematical model 

Incompressible 2-D flow and heat transfer are assumed through- 
out. Taking advantage of the periodic boundary condition, pres- 
sure P and temperature T are split into periodic components (p 
and 0) and nonperiodic (linearly varying) parts (Fusegi 1996). 

P* =p* - (OH cos tot*)x* and T* = 0* + O'x* (1) 

A variable O measuring the energy balance over l is written as 
follows: 

qL* 
®* = with rh* ~ 0 

cp[th(t*)]*l* 

Note that if rh* = 0, O* is undeterminable; however, this situa- 
tion usually does not arise in the numerical computation and, 
hence, poses no serious problem. 

The governing equations for the flow field, after being made 
dimensionless by selecting H, I I / o ,  and o~-1 as reference scales 
for length, velocity, and time, respectively, read 

au av 
- -  + - -  = 0 ( 2 )  
Ox ay 

Wo 2 aU aU 2 al)u 
- - - - +  + -  
Re at ax ay 

Wo 2 1 [ a2u a2u 
ap + -"~'e cOst+ --a-; [ + ) (3) 

- -  - - +  + + - - +  
Re at 3x ay ay Ree ax 2 

(4) 

Moreover, choosing dlH/k  as a reference temperature, the 
energy equation is expressed as 

Wo 2(aO aO/  au0 av0 
Re --~-+x at ] +  a-'x "-+ Oy + u O  

1 [ 0 2 0  # z 0  

- Re-Pr [ Ox""~ + -~y 2 J 
(5) 

Solution method 

The governing Equations 2-5 together with the appropriate 
boundary conditions, Equations 6-8, are solved numerically us- 
ing a finite volume method. A nonstaggered grid arrangement, 
termed the "pressure-weighted interpolation method corrected" 
(Kobayashi and Pereira 1991), is adapted for the Navier-Stokes 
equations. In PWlMC, velocities at the control volume faces are 
evaluated by interpolating adjacent cell center velocities with 
appropriate weighting, thereby coupling the velocity to the pres- 
sure and eliminating nonphysical oscillations in the pressure 
field. Aside from the collocated grid approach, the present 
numerical procedure is based on the well-known SIMPLE 
algorithm (Patankar 1980). 

A second-order accurate central difference scheme is em- 
ployed for the spatial derivatives, except for the convection 
terms, which are discretized using the third-order QUICK 
upwind scheme (Leonard 1979). Furthermore, a second-order 
backward difference formula is applied to preserve overall 
second-order accuracy in the present solution method. The 
finite-difference equations are solved sequentially and iteratively 
within the framework of the fully implicit scheme using the 
cyclic Tri-Diagonal Matrix Algorithm (TDMA) (Patankar et al. 
1977) suitable for the periodic boundaries. 

Uniformly spaced meshes are used throughout the calculation 
field, which is divided by 42 x 41 grid points in the majority of 
computations. The time-step is At=0.025~r, or equivalently 
Ax= 1/80, and is found to generate time-step-independent 
solutions. 

Convergence at any time-step is declared when the following 
criterion is met: 

for  all grid points and all variables: [dr - ~b n - l l/l~b"lmx ~ 10 -s 

(9) 

where ~b denotes dependent variables (u, v, p, and 0). The 
superscripts n and n -  1 refer, respectively, to the current and 
previous iteration levels. The developed computer code has been 
validated by solving standard test problems, for which either 
exact analytic solutions or highly accurate numerical solutions 
are available. 

The first test problem is the fully developed periodic flow in a 
plane (ungrooved) channel, which allows a closed form solution. 
As described in Fuse# (1996), numerical predictions were in 
excellent agreement with the exact solution. As the second test 
problem, the fully developed flow with self-sustained oscillations 
in a grooved channel is considered. 

Large-amplitude self-sustained oscillations appear in flows 
over grooves. The onset of unsteadiness results from the 
Kelvin-Helmholz hydrodynamic instability of the cavity shear 
layer. For a periodically grooved channel, the linear stability 
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analysis was conducted by Ghaddar et al. (1986a) using a 
spectral-element-based I)NS method. Self-sustained oscillations 
characterized by a time-asymptotic behavior very much like the 
finite-amplitude Tollmien-Schlichting waves were observed be- 
yond a critical Reynolds number Reef. Recent finite-difference 
calculations of a nonlinear analysis that dealt with the full 
Navier-Stokes equations (Pereira and Sousa 1993) showed re- 
suits similar to those of Ghaddar et al. (1986a) as to the oscilla- 
tion characteristics. Both investigations examined the same geo- 
metric condition: referring to Figure 1, the geometry of the 
grooved channel was selected to be l / H  c = 6.666, L / H ~  = 2.222, 
and h /H~ = 1.111, where H c is the half-height of the channel 
[H c = (2H - h)/2]. In the fully developed state, Recr (based on 
Hr and (3/2)urn, u,, being the average velocity) was found to lie 
within the range of 950 < Rear < 1050, which was substantially 
lower than that corresponding to an ungrooved channel. 

Accurate prediction of the self-sustained oscillatory flow in 
the grooved channel is a critical test, serving as validation of the 
present time-dependent solution procedure. In the present com- 
putation, the Reynolds number Re= (defined in the manner 
described above) was set to 800 and 1200, allowing direct com- 
parison of the results with the previous results (Ghaddar et al. 
1986a; Pereira and Sousa 1993). The selected Reynolds numbers 
encompass the reported Recr( = 1000). A uniform mesh consist- 
ing of 66 × 31 grid points was used. The initial condition was 
the plane Poiseuille flow in the upper channel on which 
Tollmien-Schlichting waves with wavelength of 1/2 were super- 
imposed. Three time-steps, consecutively refined to be At = 0.278, 
0.189, and 0.0947, were used to examine the effect of the tempo- 
ral resolution. They correspond, respectively, to 1/20th, 1/40th, 
and 1/80th of the freque, ncy of forced perturbations. By confin- 
ing our attention to small-amplitude disturbances, the perturbed 
velocity v' is written as 

v ' (x ,  y, t) = ~R[~(y)expi(ax - 21r tot)]exp(crt) (10) 

where $ is the amplitude function, a is the wave number (2"rrn/l 
with n = 2), to is the frequency, and tr is the amplification rate (a 
real number). The symbol ~R[ ] denotes the real part of [ ], and i 
is the imaginary index. In the linear stability analysis, determina- 
tion of ~ amounts to an eigenvalue problem of the well-known 
Orr-Sommerfeld equation for which 0, the eigenfunction, is the 
dependent variable. In a nonlinear analysis, v' may be arbitrary; 
nevertheless, v' given by Equation 10 with o~ = 0.132 and cr = 
-0.02 is considered in the present computation. This implies that 
the perturbation will dirainish gradually. It becomes ineffective 
for t >> 1. 

Figure 2 shows the time variations of the v-velocity at x = 0, 
y = 0 (the midpoint at the upper plane of the cavity) for Re= = 800 
and 1200. Oscillations are damped gradually at Re u ---800 (a 
suberitical Re); in contrast, at a supercritical Re= of 1200, steady 
oscillations persist, even after the initial disturbance dies down. 
The obtained frequency is to = 0.147, which is in good agreement 
with to = 0.132 (Pereira and Sousa 1993) and 0.141 (Ghaddar et 
al. 1986a). For generating the results presented, the smallest 
time-step (At = 0.0947) was specified. Larger values of At reduce 
the amplitude of oscillations, although the frequency to remains 
unchanged. 

Resu l ts  and  d iscuss ion  

Numerical solutions reach periodic states after a few cycles of 
oscillations, regardless of initial conditions. For convenience of 
presentation, t = 0 is set to the beginning of the periodic states. 

Results for low Re ( <  10) have been reported elsewhere 
(Fusegi 1996) and, hence, are only briefly noted here for the sake 
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Figure 2 Time history of the v-velocity at x----O, y = 0  (mid- 
point of the cavity upper plane); (a) Reu= 800, (b) Reo= 1200 

of completeness. The flow field is characterized by the presence 
of a standing vortex that fills the whole cavity over almost the 
entire oscillation cycle. As a consequence, there is little exchange 
of mass across the upper plane of the cavity (y = 0). Heat 
transfer to the lower wall of the cavity is attributable almost 
solely to conduction, resulting in low heat transfer rates; i.e., 
Nu -- 1. These features are representative of the viscosity domi- 
nated flow. In this paper, results for convective flows (Re > 102) 
are mainly considered. 

Figure 3 shows a series of instantaneous contour diagrams of 
the flow and temperature fields over a half-cycle at Re = 102 and 
Wo = 4. At every cycle, the pressure gradient reaches the maxi- 
mum II and the minimum - H  at • = N and N + 1/2, respec- 
tively, where N is integer. In Figure 3a, the streamlines in the 
throughflow run almost parallel, except for those near the en- 
trance to the cavity, which bend toward the cavity interior. The 
inner cavity flow is seen to be weak and nearly stagnant. It is 
noted that, because there is a phase shift between the pressure 
gradient and the flow rate, as apparent in Figure 6, the flow rate 
continues to rise until it reaches a peak value at about a time 
depicted in Figure 3c. Prior to this, a circulatory cell appears in 
the cavity, as shown in Figure 3b. This vortex grows in size and 
strength until it merges into the throughflow, when the flow rate 
approaches zero (Figure 3g). The flow rate turns eventually to 
negative as the direction of the throughflow reverses, as shown in 
Figure 3h. During the entire course of these events, the isotherms 
in the cavity align almost horizontally, which is suggestive of the 
dominance of conductive heat transfer. 

For the rest of the oscillation cycle, during which the pressure 
gradient changes from the minimum to maximum, the antisym- 
metric patterns of the above sequence appear (not shown). In 
contrast, Figure 4, results for Re = 103 and Wo = 8, represent 
convection-dominated features of the oscillatory fields. In Figure 
4a, the throughflow forced by the near-maximum pressure gradi- 
ent is seen to enter the cavity up to about the midheight. This 
causes the convection of high-temperature fluids upward near 
the right sidewall. When the pressure gradient decreases, a 
distinct vortex appears inside the cavity (Figure 4b). From 
Figures 4c-4g, the vortex wanders inside the cavity by constantly 
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Figure 3 Isovalue contours of the stream function ~ {left) and temperature 0 {right) at Re= I02 and We= 4 for a half-cycle of 
oscillations starting at {a) ~r=4+I/BO through {h) ~=4+36/B0 with increment of A~=5/BO. [A~=0.037 {throughflow) and 
0.006 {vortex); A0=0.077] 

changing its shape. It is eventually ejected to the channel, as seen 
in Figure 4h. This vortex circulates heated fluid inside the cavity. 

In the remaining half-cycle, the mirror images of the fields 
depicted here appear, as before. No time asymmetry was 
detected in the parameter ranges considered in the present 
investigation. 

As elaborated by Nishimura et al. (1991), steady streaming 
obtainable by time averaging the flow field over the entire 
oscillation cycle may be regarded as a good indicator of fluid 
mixing. Figure 5 shows the steady-streaming patterns at the two 
different Re for Wo -- 4. In Figure 5a, at Re = 10 2, the primary 
vortex pair is clearly observable in the upper region of the 
channel where the throughflow is present, and the weaker 
secondary cells appear inside the cavity. These vortices reflect 
the existence of rather intense and organized flow patterns in 
instantaneous flow fields. Because of the large distance from the 

cavity opening (y = 0), the flow in the vicinity of the heated lower 
plate of the cavity is overall insignificant in this viscosity- 
dominated flow. In contrast, Figure 5b, depicting the steady 
streaming at Re = 10 3, reveals the tertiary vortex pair near the 
cavity bottom. The intensity of the secondary vortices is also seen 
to increase. Because of more prominent inertial effects, the flow 
in the cavity interior is intensified in this case. When Wo 
doubles; i.e., W o =  8, the tertiary cells grow in size and 
come to occupy the larger part of the cavity, responding to an 
increased penetration depth of the oscillatory throughflow into 
the cavity (not shown). 

Figure 6 shows the time histories of the average Nusselt 
number 1~,  the mass flow rates of the through flow ,h, and the 
rate of exchange of the mass flow between the cavity and the 
channel across the top plane of the cavity (y = 0) rhea,. Recalling 
that the pressure gradient is of cosine function form; i.e., cos "r, a 
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Figure 4 Isovalue contours of the stream function ~ (left) and temperature 0 (right) at Re= 10 3 and Wo=  8 for a half-cycle of 
oscillations starting at (a) r =  4-1-1/80 through (h) r = 4 + 3 6 / 8 0  wi th increment of A t =  5/80. [A~=0 .043  (throughflow) and 0.01 
(vortex); A0= 0.031] 

phase shift in rh is immediately recognizable. It seems to in- 
crease for higher Re, suggestive of the intensity of inertial 
effects. In the heat transfer results, ~ values for Re = 102 and 
Wo = 4 (Figure 6a) are consistently close to 1, because heat 
transfer is mainly caused by conduction. In contrast, the higher 
heat transfer rates in Figure 6b (for Re = 103 and Wo = 8) are 
attributable to the pronounced convection effects. In this case, 
rhcv exhibits sharp peaks at every half-cycle of oscillations, re- 
flecting the penetration of the throughflow into the cavity (see 
also Figure 4a). 

Figure 7 is a comprehensive picture of the positive 
half-cycle-averaged values of Nu, rh, and mcv for the entire 
ranges of Re and Wo studied in the present investigation. Except 
for the (N-u) results in the conduction-dominated cases (Re < 
102), these quantities increase monotonically by increasing Re 
and Wo. For high Re (>  500) and Wo (>  8), (lq-u) exceeds the 

value achievable by an unribbed plane channel having nonoscilla- 
tory throughflow, as indicated in the same figure. Raising Wo at 
a given Re leads to an increase in (rhcv) as the throughflow 
comes to a deeper penetration into the cavity. 

Unsteady, aperiodic solutions appeared when Wo was in- 
creased further beyond the values considered in the present 
paper, suggesting the possible existence of flow instability. Be- 
cause flows may no longer remain 2-D under such situations, no 
attempt is made in the "present investigation to examine this state 
of flow. This is left as a future work. 

Finally, a grid convergence test is reported for the case of 
Re = 1 0  3 and Wo = 8. Table 1 summarizes (rh) and (lq-u) com- 
puted using 22 × 21, 42 × 41, and 62 x 61 uniform meshes. As to 
(rh), the two coarser grid solutions are seen to be within +1% 
difference of the fine grid solution. On the other hand, (N-u) 
obtained by the coarse 22 × 21 grids is about 10% lower than 
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(b)  

Figure 5 Steady-streaming patterns; (a) R e = l O  2, W o = 4  
[A~=  8.64 × 10-4 (primary vortices), 8.64 × 10 -5 (secondary 
vortices)]; (b) R e = l O  3, W o = 4  [A~=4 .03  × 10 -4 (primary 
vortices); 4.03 × 10 -5 (secondary vortices); 4.03 × 10 -6 
(tertiary vortices)] 

that of the fine 62 X 61 grids. However, (lq'u) of the 42 x 41 grids 
agrees with that of the 62 x 61 grids up to the first three digits. 
When plotted in Figure 6, the results of the 42 × 41 and 62 X 61 
grids virtually overlap. Hence, the 42 x 41 grids are thought to 
provide sufficiently grid-independent results. 

In an effort to provide uniform reporting of grid refinement 
studies, an index, termed "grid convergence index" (GCI), has 
been proposed (Roache 1994). The GCI serves as a grid refine- 
ment error estimator, which is derived from the generalized 
Richardson extrapolation. An advantage of the GCI over other 
error estimators based on the well-known Richardson extrapola- 
tion would be that the GCI is conservative, meaning that the 
actual error (which can be computed if the exact solution exists) 
is less than an estimated error given by the GCI. The reference 
(Roache) elaborates on a second-order method applied to two 
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sets of finite difference meshes having the uniform grid density 
(fine and coarse grids). As an attempt to quantifications of an 
error estimation of the present study, the GCI has been calcu- 
lated from the (lq~) data available in Table 1. 

Definition of the GCI is (Roache 1994) 

3 "IBI ff ine - - f c  . . . . .  
GCI = - -  with e = (11) 

r p -- 1 ffine 

where fco . . . .  and ffine are, respectively, coarse and fine grid 
solutions, r is the ratio of grid spacing A (Aooarse/Afine), and p is 
the order of accuracy. The factor 3 is set so that in the case of 
r = p  = 2; i.e., grid doubling and a second-order method, GCI = 
le]. Note that the normalized actual error may be expressed as 

fine --  fexaet  
8act  fexact 

For the present study, f is taken to be (lq'fi), an integrated 
value of the temperature gradient at the bottom wall of the 

Table 1 Results of a grid convergence test at Re= 10 3 and 
W o = 8 ,  showing (rh) and (]~-u> computed using the 
three difference meshes 

22 × 21 grids 42 × 41 grids 62 × 61 grids 

(rh) 0.5509 (101%) 0.5372 (99%) 0.5428 
(lq-G) 2.328 (90%) 2.596 (100%) 2.598 

Numbers in parentheses are the percent ratio of the data 
based on the results of the 62 × 61 grids. 
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cavity, and p is set to 2, because the numerical method maintains 
at least a second-order accuracy. Concerning r, two values are 
selected; namely, r 1 = 2 ( =  40 /20)  for the 41 and 21 grids in the 
y-direction, and r 2 = 1.5 ( = 6 0 / 4 0 )  for the 61 versus 41 grids. The 
GCI for these two cases are computed to be GCI 1 = 10.32% and 
GCI 2 = 0.1539%, Consequently, a strong grid convergence of the 
results is indicated between the (42 × ) 41 and (62 × ) 61 grids. 

Conclusions 

The properties of oscillatory flows in a periodically grooved 
channel are studied numerically by systematically varying Re and 
Wo over extensive ranges. The developed computational proce- 
dure was validated by solving the standard test problems dealing 
with forced oscillatory flow and transitional self-sustained oscilla- 
tory flow in a grooved channel. The computed results were 
compared with the exacl: solution or with the previously pub- 
lished numerical data. The results demonstrated the ability of 
the present numerical method to predict the sensitive time- 
dependent  flows accurately. 

In the grooved channel  with the oscillatory throughflow, the 
phase shift between the imposed pressure gradient and the flow 
rate was clearly observed. It is pronounced in high-Re ( > 102) as 
a manifestation of stronger inertial effects. Communicat ion be- 
tween the fluid in the cavity, and the throughflow is promoted as 
Re a n d / o r  Wo increase. Particularly in high Wo ( > 4) studied in 
the present investigation, the throughflow penetrates deeper  into 
the cavity. This acts to enhance heat  transfer to the heated 
bot tom wall of the cavity significantly. 
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